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Abstract

Background: Long-standing aortic stenosis (AS) re-
sults in fibrotic changes that often persist after TAVR. 
Fibrosis in AS preferentially affects the left ventricular 
(LV) basal segments and can lead to ventricular desyn-
chrony.

Objective: Determine the prognostic utility of strain 
parameters as measured by speckle-tracking echocar-
diography in patients undergoing transcatheter aortic 
valve replacement (TAVR). We hypothesize that basal 
longitudinal strain (BLS) and mechanical dispersion 
(MD) measured after TAVR will predict all-cause mor-
tality in severe AS

Methods: 159 patients (51% men, 81±9 years) with 
severe AS (aortic valve area 0.7±0.2 cm2, mean gradi-
ent 46±16mmHg) who underwent TAVR at our institu-
tion were retrospectively analyzed. 2D speckle-track-
ing echocardiography was used to assess myocardial 
deformation and MD (SD of time from Q/R on the ECG 
to peak strain in 16 LV segments) immediately after 
TAVR (median, 1 day). Images were analyzed offline us-
ing a vendor-independent software (TomTec).

Results: At 1-year post-TAVR, 28 (17.6%) patients 
died. Non-survivors demonstrated impaired global lon-
gitudinal strain (GLS, -11.2±3% vs -14.2±4%, p=0.001), 
impaired BLS (-10.9±2% vs -13.3±3%, p=0.001), and 
pronounced MD (86±33 ms vs 70±26 ms p=0.006) com-
pared to survivors. Baseline multivariable Cox regres-

Introduction

Aortic stenosis (AS) is a common valvular heart 
disease that causes serious myocardial dysfunction 
[1]. Severe AS is often associated with the develop-
ment of adverse cardiac symptoms and increased 
risk of mortality [2]. Untreated symptomatic patients 
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sion model (Figure) included age, STS, NYHA, renal dis-
ease, AV mean gradient, and post-TAVR paravalvular 
leak as significant univariates (model 1, p<0.001). An 
incremental prognostic value was achieved by add-
ing BLS to model 1+ GLS (p=0.001). Addition of MD to 
the model 1 + GLS + BLS provided further incremental 
prognostic increase (p=0.008). For the measurement 
of GLS, the Interobserver Intraclass Correlation Coeffi-
cient was 0.87.

Conclusion: In severe AS, post-TAVR myocardial fibro-
sis assessed by strain imaging was significantly associ-
ated with cardiovascular events. This finding may pro-
vide incremental prognostic value in patients with AS.
Copyright © 2019 Science International Corp.
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have poor outcomes [3]. Transcatheter aortic valve re-
placement (TAVR) has proven to be an alternative to 
surgical aortic valve replacement for the treatment of 
symptomatic severe AS [4].

Randomized clinical trials comparing TAVR with 
standard-of-care therapies in selected patients with 
moderate to severe aortic stenosis who are at high-
er than normal risk for surgical aortic valve replace-
ment have been completed and demonstrated 
one-year mortality rates for TAVR that were non-infe-
rior and in some cases superior to standard surgical 
therapies [5-8].

To improve risk stratification in TAVR patients, sev-
eral studies identified variables associated with poor 
outcomes. Age, Society of Thoracic Surgery (STS) 
score, New York Heart Association (NYHA) class, and 
renal disease were previously identified as prognostic 
predictors of mortality [9-12]. In addition, paravalvu-
lar leak (PVL) and post-procedural renal insufficiency 
were identified as important risk factors for post-TAVR 
mortality [13-15].

In long-standing AS, progressive valve narrowing 
triggers a hypertrophic response that preserves ven-
tricular function for many years. Over time, the devel-
opment of underlying myocardial fibrosis and myo-
cyte injury leads to progression from hypertrophy to 
heart failure [16, 17]. Once myocardial fibrosis ensues, 
it  provides a structural substrate for arrhythmoge-
nicity, playing a major role in  sudden cardiac death 
[18]. Moreover, histological studies demonstrated an 
association between myocardial fibrosis at the time 
of aortic valve replacement (AVR) and poor long-term 
outcomes post-valve replacement [19]. Myocardial 
biopsy is considered the gold standard for assessing 
myocardial fibrosis, however, it is an invasive proce-
dure that could lead to several complications [20]. 
Therefore, a need for modern imaging techniques 
for noninvasive assessment of myocardial fibrosis has 
emerged.

In this context, two-dimensional speckle track-
ing echocardiography (2D-STE) is a promising imag-
ing modality that allows the diagnosis of subclinical 
cardiac impairment including fibrotic changes not 
detected by conventional echocardiography [21]. 
2D-STE provides an assessment of myocardial de-
formation and left ventricular torsion [22]. Of all the 
myocardial deformation parameters, global longitu-

dinal strain (GLS) has been shown to be more clinical-
ly useful than circumferential or radial strains [23]. In 
recent studies, GLS had superior prognostic value to 
left ventricular ejection fraction (LVEF) in predicting 
cardiac death, urgent valve surgery or hospitaliza-
tions due to heart failure [24]. Additionally, GLS has 
been shown to be an independent predictor of out-
comes in patients with severe asymptomatic AS [25].

More recently, regional or basal longitudinal strain 
(BLS) has been proven to be a superior predictor of 
future AVR in asymptomatic AS compared to GLS 
[26, 27]. Additionally, myocardial fibrosis related to 
long-standing AS can lead to desynchrony and pro-
nounced mechanical dispersion (MD) which has been 
linked to poor outcomes in these patients [28].

In the early post-TAVR period, a dramatic reduction 
in the afterload and immediate offloading of the ven-
tricle lead to improvement in strain parameters [29]. 
However, literature describing the prognostic utility 
of impaired BLS and MD immediately post-TAVR re-
mains limited. We hypothesize that in addition to 
GLS, BLS and MD measured immediately post-TAVR 
will predict all-cause mortality in severe AS.

Methods

Study design and population 
This retrospective study was conducted at Rush 

University Medical Center (RUMC), Chicago, USA. All 
patients underwent TAVR after evaluation by a multi-
disciplinary heart team. The study was reviewed and 
approved by the Institutional Review Board at RUMC. 
From a total of 187 patients with severe aortic ste-
nosis (aortic valve area < 1 cm2 , mean gradient > 40 
mmHg) who underwent TAVR between January 2012 
and March 2018 and had a follow-up echocardiogram 
performed immediately after TAVR, we excluded pa-
tients with incomplete data (n=11), concomitant 
significant valvular disease (n=10), and poor image 
quality or arrhythmia at the time of echocardiogra-
phy (n=7). A total of 159 patients were included in the 
current study (Figure 1).

Two-dimensional strain imaging
In this study, myocardial strain parameters were 

measured by 2D-STE using a vendor-independent 
software (TomTec, Germany) immediately after TAVR 
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negative longitudinal strain during the cardiac cycle) 
in 16- segment model.

Statistical analyses
All calculations were performed using SPSS/PC 

statistical program (version 21, SPSS Inc., Chicago IL, 
USA). Continuous variables were reported as means 
± SD while categorical variables were expressed as 
numbers or ratios. Comparisons between groups 
were achieved using unpaired Student’s t-test for 
continuous variables while χ2 was used to evaluate 
dichotomous variables. A p-value of less than 0.05 
was considered statistically significant. Cox propor-
tionate hazard models were used to determine sig-
nificant predictors of all-cause 1-year mortality. Mul-
tivariate regression analysis included all significant 

(median, day 1). Two-dimensional strain analysis was 
performed on grey-scale images from the three api-
cal views (longitudinal function) with frame rates of 
70-90 frame/s and digitally stored for three cardiac 
cycles. Endocardial border tracking was achieved 
automatically using two points in the annular re-
gion and one point in the apical segments. Tracking 
quality was visually verified. Segments that failed ini-
tial tracking were manually adjusted. Segments that 
could not be tracked properly after manual adjust-
ment were rejected. Peak systolic values from 16-seg-
ment model (6 basal, 6 mid and 4 apical segments) 
were averaged to obtain GLS (Figure 2). Six basal seg-
ments were averaged to obtain BLS. MD was defined 
as the standard deviation of time to peak strain (time 
of onset of Q/R wave in electrocardiogram to peak 

Figure 1. Patient Selection. Flow diagram of screening and exclusion criteria of patients with aortic stenosis.



Hemu M. et al.

              Original Scientific Article257

Strain Analysis Predicts Mortality in Post-TAVR Patients

to survival status and total cohort as summarized in 
Table 1. A total of 159 patients (mean age 80.7±9.1, 
49% of women) were included in the study. A total of 
28 (17.6%) patients expired one-year post-TAVR.

Cardiovascular risk factors including body mass 
index (BMI), hypertension, diabetes, hyperlipidemia, 
and kidney disease were not statistically significant be-
tween survivors and non-survivors (Table 1). Non-sur-
vivors had higher STS scores (8.1±5.4 vs 5.6±3.7, 
p=0.004) and more NYHA class IV (28.5% vs 10.6%, 
p=0.013) (Table 1).

univariates. To further illustrate the predictive value 
of strain parameters, cox models with separate addi-
tion of GLS, BLS, and MD to baseline model contain-
ing significant univariates were constructed. Model 
discrimination was further assessed using Harrell’s 
C-statistic. Inter- and intra-observer were expressed 
by intra-class correlation coefficients.

Results

Study population selection is presented in 
Figure 1. Baseline characteristics stratified according 

Figure 2. Two-dimensional speckle tracking echocardiography analysis. Strain curves and a color-coded 16-segment bull’s eye plot 
are presented. Color lines indicate regional strain. Values of longitudinal strain are negative (sign -). Endocardial border tracking 
in apical four-chamber view can be achieved automatically. Global longitudinal strain can be calculated from 4 chamber views. 
Model 1 = Age, STS score, NYHA IV, Renal Disease (Cr >2 mg/dL), AV Mean Gradient, post-TAVR PVL.
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Baseline multivariate Cox regression model included 
age, STS, NYHA, renal disease, AV mean gradient, and 
post-TAVR PVL (model 1, p<0.001). Incremental prog-
nostic information was achieved by adding strain 
parameters as shown in Figure 3. Addition of GLS to 
model 1 resulted in a significant C-statistic increase 
(40.6 vs. 34.3, p=0.032). A further incremental prog-
nostic value was achieved by adding BLS to model 1 
+ GLS (47.5 vs. 40.6, p=0.001). Similarly, addition of 
MD to model 1 + GLS + BLS resulted in further incre-
mental prognostic value (50.9 vs. 47.5, p=0.008). For 
the measurement of GLS, the Interobserver Intraclass 
Correlation Coefficient was 0.87.

Discussion

This retrospective clinical study provides evi-
dence that myocardial strain parameters identified 
using 2D-STE immediately post-TAVR can be helpful 
in predicting poor outcomes in patients with AS. We 
demonstrated that both BLS and MD independently 
predict 1-year mortality in TAVR patients and provide 
incremental prognostic information in addition to 
known prognostic predictors of poor outcomes.

Myocardial fibrosis is an early morphologic change 
in patients with AS [18, 25, 26]. Two types of myocar-
dial fibrosis were identified, interstitial fibrosis and 
replacement fibrosis. The interstitial fibrosis is revers-
ible, and the latter is irreversible [27, 28]. Fibrosis af-
fects myocardial diastolic and systolic function and 
provides a structural substrate for myocardial desyn-
chrony [34]. Therefore, it plays a major role in sudden 
cardiac death and progression to heart failure [35]. 
Long-standing AS-related maladaptive myocardial 
changes resulting in fibrosis and ultimately impaired 
left ventricular (LV) function may persist after AVR 
and can affect clinical outcomes [31].

Previous studies developed a robust and definitive 
risk model to predict the outcomes of TAVR [36-38]. 
The basic model (model 1) included age, STS score, 
NYHA IV, renal disease, aortic valve mean-gradient, 
and post-TAVR PVL had a significant prognostic val-
ue in our patients. Various statistical metrics were 
employed to examine the incremental value of 
markers beyond model 1 [38-39]. Reviewing marker 
performances across the metrics, GLS, BLS, and MD 
emerged as the most promising markers.

GLS and BLS of non-survivors measured by 2D-STE 
as shown in Figure 2. Non-survivors demonstrated 
impaired GLS (-11.2±3% vs. -14.2±4%, p=0.001), im-
paired BLS (-10.9±2% vs -13.3±3%, p=0.001), and pro-
nounced MD (86±33 ms vs 70±26 ms, p=0.006) com-
pared to survivors.

Univariate analyses showed STS score, NYHA IV, re-
nal disease (defined as baseline creatinine > 2 mg/dl), 
aortic valve (AV) mean gradient and post-TAVR PVL as 
significant univariates for 1-year mortality (Table 2). 

Table 1. Baseline clinical characteristics of all patients.

All  
Patients Survivors

Non- 
survivors P-value

N (%) 159 131 (82.4%) 28 (17.6%) -

Age 80.7±9.1 80.1±9.7 83.5±4.9 0.073

Gender 
(Female %)

78 (49.0%) 64 (49%) 14 (50%) 0.913

BMI 29.2±7.4 29.7±7.6 27.2±5.7 0.103

NYHA Class 
IV

22 (13.8%) 14 (10.6%) 8 (28.5%) 0.013

STS score 6.1±4.1 5.6±3.7 8.1±5.4 0.004

Hyper- 
tension

141 (89%) 115 (88%) 26 (93%) 0.445

Hyper- 
lipidemia

98 (62%) 78 (60%) 20 (71%) 0.243

Diabetes 67 (42%) 50 (38%) 16 (57%) 0.065

CAD 111 (70%) 89 (68%) 22 (79%) 0.269

Creatinine 1.5±1.3 1.4±1.3 1.6±1.0 0.515

Baseline 
LVEF, %

55.3±15.4 55.9±15.0 52.2±17.2 0.224

Post-TAVR 
LVEF, % 
(Day1)

59±15 61 ±14.5 55±17 0.053

AV mean 
gradient

46.2±16.4 48.3±16.4 36.3±12.0 0.001

GLS, % -13.7±4.1 -14.2±4.0 -11.2±3.1 0.001

BLS, % -12.9±3.2 -13.3±3.2 -10.9±1.9 0.001

MD, msec 72.8±27.8 70.0±25.8 85.8±33.4 0.006

Data are expressed as mean ± SD or as number (percentage). Comparisons 
were performed using unpaired Student’s T tests or χ2 tests. P-value refers to 
comparisons between survivors and nonsurvivors.

BMI: body mass index; NYHA: New York Heart Association; STS: Society of 
Thoracic Surgery; CAD: coronary artery disease; LVEF: left ventricular ejection 
fraction; AV: aortic valve; GLS: global longitudinal strain; BLS: basal longitudi-
nal strain; MD: mechanical dispersion.
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fibrotic changes in AS primarily affect the basal seg-
ments and later progress to mid and apical segments 
[30]. In addition to BLS, MD has also been associated 
with myocardial fibrosis and heterogeneous myo-
cardial contraction in AS [39]. Studies have shown 
a moderate correlation between the prevalence of 
myocardial fibrosis as detected on cardiac MR, and 
MD measured with 2D-STE [41]. In our study, MD was 
a significant predictor of all cause 1-year mortality in 
univariate analyses and remained a significant predic-
tor in multivariate analysis. Additionally, MD resulted 
in a significant incremental prognostic value when 
added to model 1 in combination with BLS and GLS. 
To our knowledge, this is the first study that describes 
BLS and MD as important prognostic variables imme-
diately post-TAVR. This emphasizes the potential use 
of 2D-STE in guiding the management of post-TAVR 
patients.

2D-STE is an emerging tool in detecting myocardial 
dysfunction prior to a clinically significant decrease in 
LVEF. When assessing for myocardial fibrosis, 2D-STE 
is cost-effective in comparison to cardiac MRI and less 
invasive than myocardial biopsy. Impaired pre-TAVR 
myocardial strain parameters have been linked to ad-
verse outcomes in patients with AS [17]. In this study, 
we sought to determine if these strain parameters 
hold a prognostic value even post-TAVR.

Reduction of left ventricular afterload immediate-
ly post-TAVR results in improved myocardial strain 
parameters. In a study done by Delgado et al., a 19% 
reduction in GLS was noted immediately post-TAVR 
compared to baseline parameters [40]. In our study, 
GLS remained an important prognostic variable in 
multivariate analysis when adjusting for variables in 
model 1. However, addition of BLS to model 1 + GLS 
showed a further improvement in incremental prog-
nostic value. This may be explained by the fact that 

Figure 3. Incremental value of GLS, BLS, and MD post-TAVR. Incremental prognostic information by adding strain parame-
ters. The C statistic values were obtained from the multivariable Cox proportional hazards regression models. Model 1 in-
cludes age, STS score, NYHA IV, renal disease (Cr > 2mg/dL), AV mean gradient and post-TAVR PVL as significant univariates. 
AV: aortic valve; BLS: basal longitudinal strain; Cr: creatinine; GLS: global longitudinal strain; MD: mechanical dispersion; NYHA: New 
York Heart Association; PVL: paravalvular leak; TAVR: transcatheter aortic valve replacement.
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of enough data to calculate the delta change in myo-
cardial strain post-TAVR which could be an additional 
prognostic variable in TAVR patients. Further studies 
are needed to determine the prognostic implication 
of this factor. Although internal validation confirmed 
our results, the differential performance of the mark-
ers investigated here needs to be reexamined in larg-
er study populations. More studies are needed to 
assess whether post-TAVR index-enhanced risk strat-
ification can guide management decisions of post-
TAVR patients, alongside with previous models.
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Conclusion

We demonstrated that post-TAVR BLS and MD are 
independent predictors of 1-year mortality in patients 
with severe AS. Our study further demonstrates the 
incremental prognostic utility of these parameters to 
known markers of poor out. Early assessment of myo-
cardial strain and mechanical dispersion should be 
considered as new indices for identifying patients at 
risk for poor outcomes post-TAVR.

Limitations

Baseline myocardial strain data was not available 
before TAVR. Therefore, it was not possible to deter-
mine whether pre- and post-TAVR strain parameters 
provide similar or different prognostic information. 
Another important limitation of our study is the lack 

Table 2. Univariable and multivariate cox regression analysis for predictors of all-cause 1-year mortality.

Variables

Univariate Multivariate

HR (95% CI) P-value HR (95% CI) P-value

Age 1.039 (0.99-1.09) 0.094

Gender (Male) 1.038 (0.49-2.17) 0.922

BMI 0.954 (0.90-1.01) 0.108

HTN 0.553 (0.13-2.32) 0.419

CAD 1.63 (0.67-4.10) 0.269

Diabetes 2.03 (0.96-4.30) 0.062

STS score 1.110 (1.04-1.19) 0.003

NYHA IV 2.92 (1.28-6.63) 0.011

Renal Disease (Cr>2) 2.31 (1.02-5.24) 0.046

Baseline LVEF 0.987 (0.96-1.01) 0.260

Post-TAVR LVEF, % (Day1) 0.978 (0.95-1.01) 0.056

AV Mean Gradient 0.949 (0.92-0.97) 0.001

Post-TAVR PVL 2.339 (1.45-3.75) 0.001

GLS, % 1.21 (1.08-1.34) 0.001 1.12 (1.01-1.24) 0.045

BLS, % 1.29 (1.12-1.47) 0.001 1.21 (1.05-1.40) 0.008

MD, msec 1.02 (1.01-1.03) 0.003 1.02 (1.01-1.04) 0.001

Adjust for: age, STS score, NYHA IV, renal disease, AV mean gradient, post-TAVR PVL

HR: Hazard ratio; BMI: body mass index; Cr: creatinine; NYHA: New York Heart Association; STS: Society of Thoracic Surgery; CAD: coronary artery disease; LVEF: 
left ventricular ejection fraction; AV: aortic valve; TAVR: trans-catheter aortic valve replacement; PVL: paravalvular leak; GLS: global longitudinal strain; BLS: basal 
longitudinal strain; MD: mechanical dispersion.
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